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a b s t r a c t

Much of the equine population is obese and therefore predisposed to the development of additional
health concerns such as equine metabolic syndrome (EMS). However, pharmacologic treatments for EMS
are limited. Omega-3 fatty acid supplementation is a therapeutic strategy in humans with metabolic
dysfunction that improves insulin sensitivity and reduces inflammation, but the effects of omega-3 fatty
acid supplementation in horses with EMS are unclear. Therefore, in this pilot study, 10 mixed-sex and
mixed-breed horses with EMS were fed a docosahexaenoic acid (DHA)-rich microalgae containing 16 g
DHA/horse/d or served as controls for 46 days. Inflammatory status was measured using serologic
enzyme-linked immunosorbent assay and in peripheral blood mononuclear cells (PBMCs) using flow
cytometry and reverse transcription polymerase chain reaction. Circulating fatty acids, triglyceride,
leptin, and adiponectin concentrations were also determined. Insulin and glucose dynamics were
assessed with oral sugar test (OST) and frequently sampled intravenous glucose tolerance testing.
Postsupplementation, treated horses had an increase in many circulating fatty acids, including DHA (P <
.001). Treated horses also had lower serum triglycerides postsupplementation (P ¼ .02) and a trend (P ¼
.07) for reduced PBMC tumor necrosis factor a. Interestingly, after 46 days, control horses had an increase
in insulin responses to the OST (P ¼ .01), whereas treated horses did not (P ¼ .69). These pilot data
indicate that DHA-rich microalgae supplementation alters circulating fatty acids, modulates metabolic
parameters, and may reduce inflammation in horses with EMS.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Obesity is an increasing problem in the equine population with
the percentage of overweight or obese horses reportedly ranging
from 20.6% to 51% [1e4], although these percentages vary based on
region and may be lower in certain populations, such as in horses
used for intense competition. Obesity in horses is associated with
serious health concerns such as insulin dysregulation (ID) [5], both
of which are two of the three defining characteristics of equine
metabolic syndrome (EMS). Equine metabolic syndrome is most
commonly defined by increased adiposity, ID, and a history of or
predisposition to laminitis [6]. Similar to humans with metabolic
dysfunction and obesity [7], horses with EMS can present with low
levels of systemic [8,9] or increased levels of tissue inflammation
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[10,11]. This inflammation further promotes ID [7] and may
contribute to increased susceptibility of EMS horses to the devel-
opment of laminitis [12], although mechanisms underlying
possibly synergy between inflammation, ID, and laminitis remain
to be understood.

Equine metabolic syndrome is most often treated using dietary
restriction and exercise [13,14]. Although this treatment regimen is
effective, it is often a lengthy process and, because of underlying
conditions such as laminitis, increased exercise is not always
possible. There are two off-label pharmaceutical treatments (met-
formin and levothyroxine sodium) used for EMS. However, the
mechanism of action for metformin is not well known, and there
are conflicting reports as the long-term safety and efficacy of lev-
othyroxine sodium [15e18]. One treatment strategy in humans
with metabolic dysfunction [19,20] is supplementation with do-
cosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA), which
has been shown to improve insulin sensitivity (SI) [21,22], promote
fat oxidation, decrease lipogenesis, and reduce inflammation
[23e25]. In horses, it improves glucose clearance [26], reduces in-
flammatory mediators [27e29], and changes circulating [30e32] as
well as skeletal muscle [33] fatty acid concentrations. However,
effects of supplementation with omega-3 fatty acids have not been
investigated in the EMS animal.

Although the mechanisms of action underlying the effects of
DHA on SI are not completely understood, it is thought to work, at
least in part, by modulating circulating fatty acid concentrations, in
particular circulating triglycerides [30,34]. This reduction in circu-
lating fatty acids can contribute to decreases in inflammation as in
obesity fatty acids can activate proinflammatory pathways. This
activation of proinflammatory pathways and the resulting increase
in proinflammatory cytokines such as tumor necrosis factor alpha
(TNF-a) and interferon gamma (IFN-g) negatively impact SI by
interfering with the insulin signaling cascade and promoting in-
sulin resistance [35]. Supplementation with omega-3 fatty acids
provides the building blocks for lipid-derived anti-inflammatory
mediators of tissue damage recovery, such as resolvins and pro-
tectins [36], and can have direct anti-inflammatory actions [37,38].
Other mechanisms by which omega-3 fatty acids may improve SI
are through their effects on metabolic transcription factors and
pathways such as peroxisome proliferatoreactivated receptor
transcription factors and the adenosine monophosphateeactivated
protein kinase pathway [39,40]. Therefore, supplementation with
omega-3 fatty acids, in particular, DHA, may be a viable treatment
option to improve metabolic and inflammatory profiles in horses
with EMS. Given this, our objective was to determine the effects of
DHA-rich microalgae supplementation in horses with EMS, with
the hypothesis that it would improve metabolic and inflammatory
responses in these animals.

2. Materials and Methods

All experimental procedures were approved by the University
of Kentucky’s Institutional Animal Care and Use Committee
(protocol #2014-1225). Ten horses with EMS of mixed sex and
mixed breed residing at the University of Kentucky’s Maine
Chance Farm were selected for this study. Equine metabolic syn-
drome was determined by the criteria in the 2010 ACVIM
consensus statement [6]. To ascertain these criteria, a portable
agriculture scale (model 700; Tru-Test Inc, Mineral Wells, TX) was
used to establish weekly body weights. Body condition score was
determined and averaged between three trained investigators
using the Henneke scoring system [41]. The same trained in-
dividuals scored regional adiposity via the Carter et al. [42] cresty
neck score (CNS) system. Blood collection for baseline (Day 0)
serum and plasma samples was carried out after an overnight fast

via jugular venipuncture, and 5e15 mL per tube was collected into
tubes containing no anticoagulant for serum and ethyl-
enediaminetetraacetic acid (EDTA) or sodium heparin containing
tubes for plasma. To ascertain the presence of ID, an oral sugar test
(OST) was performed after an overnight fast [6,43]. Insulin dys-
regulation was determined by either a fasting insulin level of >20
mIU/mL or increased insulin concentrations (>60 mU/mL) 60 mi-
nutes post administration of oral sugar [6,43]. These cut-off values
were also used, as they were recommended at the time of the
study by the Equine Endocrinology Group (EEG) of clinicians and
researchers (http://sites.tufts.edu/equineendogroup/).

Horses were screened using the thyrotropin-releasing hormone
(TRH) stimulation test [44e46], and low-dose dexamethasone
suppression test was used to [47] ensure that nonewere affected by
pituitary pars intermedia dysfunction (PPID). As recommended by
the EEG, concentrations of ACTH 10 minutes after TRH injection in
excess of 100 pg/mL or concentrations of cortisol exceeding 1.0 mg/
dL 19 hours after dexamethasone injection were considered posi-
tive for PPID. Any animals meeting these criteria were excluded.
Test to determine ID and PPID status was performed at least
2 weeks before the start of the study.

Cornell University’s Animal Health Diagnostic Center Endocri-
nology Laboratory performed analysis of ACTH, cortisol, and insu-
lin. The Millipore porcine insulin RIA kit (EMD Millipore
Corporation, Darmstadt, Germany) was used to measure insulin
concentrations [9], ACTH was measured via an automated chemi-
luminescent enzyme immunoassay system (Immulite, Erlangen,
Germany) [48], and cortisol concentrations were determined using
the Siemens Immulite Cortisol kit (Siemens, Erlangen, Germany).

2.1. Study Design and Timeline

All horses were acclimated at least 2 months before the start of
the study to dry lot paddocks and to feed and feeding protocols.
Two horses were randomly assigned and housed per paddock for
the acclimatization period and throughout the study. Horses were
provided mixed grass hay fed at 2% BW/d split between a morning
(0800e1000 EST) and afternoon (1500e1600 EST) feeding. Nutrient
analysis of the hay is presented in Supplemental Table 1. Horses
were placed into individual pens within their paddocks and were
also provided the following with their morning feeding; 1 lb/
d balancer pellet (Essential K, Tribute Equine Nutrition, OH) and 1
lb/d alfalfa pellet (Hallway feeds, Farmers Feed Mill, KY) and had
access to water and a mineral block ad libitum. Equine metabolic
syndrome horses were randomly assigned to one of two groups,
treatment group (n ¼ 6; mean age 13.2 ± 4.4 years) or control (n ¼
4; mean age 11.5 ± 2.6 years). Horses were not different in age
between the treated and control groups (P ¼ .48). At the start of the
46-day supplementation period the treatment group received a
DHA-rich microalgae supplement (FORPLUS; Alltech, Inc, Nich-
olasville KY) containing 16 g DHA (approximately 110 g supple-
ment) mixed with 25 mL water, 15 mL molasses (Double S Liquid
Feed Services, Inc, Danville, IL), and 4 mL anise extract (A1 Spice
World, Glen Head, NY) top dressed onto their balancer and alfalfa
pellets to make the supplement palatable and ensure horses
received their entire daily portion of supplement. Control horses
received only the vehicle of 25 mL water, 15 mL molasses, and 4 mL
anise extract without the algal supplement top dressed onto their
balancer and alfalfa pellets. Analysis of algal supplements nutri-
tional and fatty acid content was performed by Eurofins Analytical
Laboratories (New Orleans, LA) using high-performance liquid
chromatography (HPLC) and is presented in Supplemental Table 2.

Originally, the study was intended as a cross-over design with
12 horses and a 60-day washout period. However, two control
horses were dropped from the study for health reasons, one for
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acute laminitis and the other for acute respiratory symptoms. In
addition, the second half of the cross-over studywas not completed
because of significantly elevated concentrations of circulating DHA
in treated horses compared with controls as far as 263 days (P¼ .01,
treated horses median 0.30; interquartile range [IQR] 0.24e0.40
versus control horses median 0.06; IQR 0.06e0.172) after cessation
of supplementation.

2.2. Sample Collection

Serum and EDTA plasma samples were taken after an overnight
fast at baseline and 60minutes after administration of oral sugar for
the OST. This was carried out both before (Day 0; time point 1) and
after the supplementation period (Day 46; time point 2). Horses
were administered a frequently sampled intravenous glucose
tolerance test (FSIGTT; see below) 1 day after blood collection and
OST. Serum samples were used for determination of insulin, leptin,
and triglyceride concentrations. Ethylenediaminetetraacetic acid
plasma samples were used to determine fatty acid concentrations.

2.3. FSIGTT Tolerance TestdOptimized

At time points 1 and 2, an optimized FSIGTT was performed as
previously described [49]. In brief, an indwelling, long-term intra-
venous catheter was placed to administer treatments and collect
blood samples. After baseline blood sample collection, 50% glucose
(100 mg/kg, intravenous [IV]) was administered, followed 20 mi-
nutes later by administration of insulin (20 mU/kg, IV). Blood
samples were obtained at"10,"5, 0,1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,
19, 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 150, and
180 minutes after glucose administration. Blood samples from the
FSIGTTwere analyzed for glucose concentrations on an YSI analyzer
(YSI Incorporated, Xylem Inc, Yellow Springs, OH) and insulin
concentrations as described previously.

2.4. Endocrine and Lipid Measures

Serum samples from the OST for time points 1 and 2 and EDTA
plasma from the FSIGTT were sent to Cornell University’s endo-
crinology laboratory for determination of insulin using RIA (as
abovementioned). In addition, fasting serum samples were sent to
Cornell University’s Clinical Pathology laboratory for leptin and
triglyceride analysis via colorimetric assay using a Roche ModP
analyzer (Roche Diagnostics, Indianapolis, IN) as previously
described [50]. Fasting EDTA plasma samples from time points 1
and 2were sent toMichigan State University’s Diagnostic Center for
Population and Animal Health for plasma fatty acid analysis using
HPLC [51].

2.5. PBMC Inflammatory Cytokine Production

Heparinized blood was used to isolate PBMCs by FicollePaque
Plus (Amersham Biosciences, Piscataway, NJ) gradient centrifuga-
tion [52]. Cells were frozen in 10% fetal bovine serum (Sigma-
eAldrich, St. Louis, MO), 40% dimethyl sulfoxide, and 50% Roswell
Park Memorial Institute medium (RPMI-1640; Gibco, Grand Island,
NY) until thawed for in vitro stimulation. For stimulation, 107

PBMCs were incubated in 1 mL c-RPMI (RPMI-1640 with 2.5% fetal
equine serum [SigmaeAldrich]), 100 U/mL penicillin/streptomycin
(Sigma), and 55 mM 2-mercaptoethanol (Gibco) media. Cells were
incubated at 37#C, 5% CO2 with Brefeldin A (10 mg/mL; Sigma) and
select wells with the positive control phorbol 12-myristate 13-
acetate (PMA; 25 ng/mL; Sigma) and ionomycin (1 mM; Sigma)
for 4 hours. After this, determination of cytokine gene expression
was carried out by separating aliquots of the cells and placing them

into TRIzol (Ambion) to isolate RNA (see below). Remaining cells
were assayed by flow cytometry for IFN-g and TNF-a production.
Cells were fixed in 2% paraformaldehyde (Sigma) and stored over-
night at 4#C. After overnight storage, IFN-g and TNF-a intracellular
staining was carried out as previously described [53]. After the cells
were stained, aliquots of cells were resuspended in FACS flow, and
flow cytometric acquisition was performed on a FACSCalibur
(Becton Dickinson, San Jose, CA). Determination of the percent of
IFN-g and TNF-a lymphocytes was accomplished with the use of
Cell Quest (Becton Dickinson) [54].

A modified TRIzol method was used to extract total RNA from
PBMC cultures (see above). One microgram of RNA was reverse
transcribed into complementary DNA (cDNA), as previously
described [52,54]. In brief, 1 mg of each RNA sample and a reverse
transcription master mix (Promega, Madison, WI) were incubated
for 15 minutes at 42#C and for 5 minutes at 95#C. Reactions
included 5 mL cDNA and 20 mL of master mix. Master mix included
6.25 mL nuclease-free water (Qiagen), 1.25 mL primer/probe 20X
assaymix (Applied Biosystems, Foster City, CA), and 12.5 mL TaqMan
(Applied Biosystems). Equine-specific, inventoried, intron-
spanning primers and probes were used with Applied Biosystems
Real-Time PCR (RT-PCR; ABI 7900HT) against the following genes:
housekeeping gene beta-glucuronidase (Ec03470630_m1), IFN-g
(4331182), interleukin (IL)-6 (4351372), IL-10 (4331182), IL-1b
(4331182), and TNF-a (4331182). Samples were processed in
duplicate and incubated for 95#C for 10 minutes. They then un-
derwent 40 cycles at 95#C for 15 seconds and 60#C for 60 seconds.
Relative changes in gene expression were determined by the DDCT
method [55], with mean DCT for Week 0 set as the calibrator for all
samples. Relative quantity was calculated as 2"DDCT and used to
express results.

2.6. Serum Cytokine Analysis

Serum concentrations of TNF-a proteinwere determined using a
commercially available equine TNF-a ELISA kit (R&D, Minneapolis,
MN). This assay was optimized for equine serum samples diluted at
a minimum of 1:2 [56]. All steps of the ELISA were performed ac-
cording to the manufacturer’s instructions, with the exception of
the following which was implemented to improve the sensitivity of
the assay; coating antibody provided was prepared in carbonate
buffer (15 mmol Na2CO3, 35 mmol NaHCO3, pH 9.6), and the final
two incubation times were increased from 20 to 30 minutes. In
addition, single absorbance was measured at A450.

Serum concentrations of IL-6 were determined using an IL-6
ELISA validated for use in the horse with an analytical sensitivity
of 780 pg/mL [57]. The ELISA uses a polyclonal goat anti-horse IL-6
antibody (AF1886; R&D Systems, Inc) to coat ELISA plates (Immu-
noplate MaxiSorp; Nalge Nunc Int, Rochester, NY). The antibody
was diluted to a final concentration of 1 mg/mL in carbonate buffer
(15 mmol Na2CO3, 35 mmol NaHCO3, pH 9.6) and incubated over-
night at 4#C. Afterward, the coating solutionwas discarded, and the
plates blocked for 30 minutes at room temperature with the
addition of phosphate-buffered saline (pH 7.2) containing 0.5% (w/
v) bovine serum albumin. Plates were washed five times with
phosphate buffer (2.5 mmol NaH2PO4, 7.5 mmol Na2HPO4,
145mmol NaCl, 0.1% [v/v] Tween 20, pH 7.2). A recombinant equine
IL-6 (1886 EL, R&D Systems, Inc) diluted in twofold serial dilutions
ranging from 50 to 0.78 ng/mL was used as standard to determine
IL-6 concentrations in the samples. The serum was diluted in
phosphate buffer, added to the plates in triplicate wells, and incu-
bated for 90 minutes at room temperature. After five washes, bio-
tinylated goat anti-horse IL-6 (AF1886; R&D Systems, Inc) diluted
1:100 in phosphate buffer was added, incubated for 60 minutes,
and washed again. A streptavidinehorseradish peroxidase solution
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(Jackson ImmunoResearch Lab, West Grove, PA) was added to the
plates for another 30 minutes. After a final wash, substrate buffer
(33.3 mmol citric acid, 66.7 mmol NaH2PO4, pH 5.0) was added and
incubated for 20 minutes in the dark. The reaction was stopped by
adding 1 volume of 0.5 M H2SO4, and plates were read in an ELISA
reader (Bio-Tek, Winooski, VT) at 450 nm absorbance.

A commercially available equine specific kit (Kamiya Biomedical
Company, Tukwila, WA) was used to measure C-reactive protein
(CRP) in the serum according to manufacturer’s instructions, as
previously described [58].

2.7. Data Analysis

Datawere analyzed via Sigma Plot 13.0 (Systat Software, San Jose,
CA). A 2-way repeated measures analysis of variance was used with
fixed effects set as treated versus control and time point with all
possible interactions analyzed. Data not normal were log trans-
formed and resulted in normality. Results were considered statisti-
cally significant when P $ .05, and trends considered at P $ .10.

3. Results

3.1. Endocrine, Phenotypic, and Lipid Measures

Oral sugar test results and phenotypic data, along with serum
leptin and triglycerides, are presented in Table 1. There were no

differences in fasting insulin between control and treated horses
(P ¼ .57). However, control horses increased in their insulin con-
centrations 60 minutes post oral sugar administration over time
(from Day 0 to Day 46; P ¼ .01). Similarly, when considering the
change in insulin concentrations from baseline to 60 minutes post
oral sugar administration (delta), control horses increased (P ¼ .01)
over time, whereas DHA-rich microalgae treated horses did not
(P ¼ .42). In addition, control and treated horses were not different
in delta insulin concentrations at Day 0 (P ¼ .14); however, controls
had significantly higher delta insulin than treated horses at Day 46
(P ¼ .03). Docosahexaenoic aciderich microalgae treated horses
decreased in their serum triglycerides over time (P ¼ .02) and were
significantly lower than controls at Day 46 (P ¼ .02). There were no
differences between treated or control horses for serum leptin.
Although therewas an overall difference between Day 0 and Day 46
for BCS (P < .001), with all horses increasing over time, there were
no differences between treated and control horses. In addition,
there were no differences seen in CNS or weight either between
groups or over time.

Plasma fatty acid concentrations are presented as a percentage of
total circulating fatty acids in Table 2. Docosahexaenoic aciderich
microalgae treated horses plasma DHA and C22:2n6c (docosadie-
noic acid) concentrations increased over time and were higher at
Day 46 compared with controls. However, treated horses had a
decrease over time and, at Day 46, were lower compared with
controls in C18:1n9c (oleic acid; P ¼ .02) and C18:3n6c (gamma-

Table 1
Endocrine data, phenotypic measures, and serum leptin and triglyceride concentrations for docosahexaenoic aciderich microalgae treated and control horses with equine
metabolic syndrome both before (Day 0) and after (Day 46) supplementation period.

Endocrine and Phenotypic Measures Control Horses Day 0 Control Horses Day 46 Treated Horses Day 0 Treated Horses Day 46

Basal insulin, mIU/mL 21.58 ± 6.89 22.85 ± 6.89 32.61 ± 5.62 29.76 ± 5.62
Insulin 60 min post oral sugar administration, mIU/mL 68.90 ± 12.29a 106.25 ± 12.29b 78.13 ± 10.04a,b 82.02 ± 10.04a,b

Change in insulin concentrations (OST 60-min basal
insulin, mIU/mL)

47.31 ± 9.69 83.40 ± 9.69 45.53 ± 7.91 52.26 ± 7.91

Log BCS 0.79 ± 0.01a 0.84 ± 0.01b 0.82 ± 0.01a 0.86 ± 0.01b

CNS 2.29 ± 0.44 2.25 ± 0.44 2.97 ± 0.36 3.08 ± 0.36
Weight, kg 515.60 ± 34.54 517.19 ± 34.54 562.63 ± 28.03 568.16 ± 28.03
Leptin, ng/mL 7.23 ± 1.40 6.72 ± 1.40 7.18 ± 1.14 7.94 ± 1.14
Triglycerides, mg/dL 47.75 ± 6.62a,b 59.00 ± 6.62b 49.17 ± 5.40b 35.33 ± 5.40a

Abbreviations: CNS, cresty neck score; OST, oral sugar test.
Phenotypic measures, endocrine data, and serum leptin and triglyceride concentrations in EMS control (n ¼ 4) versus DHA-rich microalgae treated (n ¼ 6) horses. Results are
presented as least square mean ± standard error of the mean. Within a row, differences (P < .05) are represented by differing superscripts.

Table 2
Plasma fatty acid results for docosahexaenoic aciderich microalgae treated and control horses with equine metabolic syndrome both before (Day 0) and after (Day 46)
supplementation period.

Plasma Fatty Acid Concentrations (% of total fatty acids) Control Horses Day 0 Control Horses Day 46 Treated Horses Day 0 Treated Horses Day 46

C22:6n3c docosahexaenoic acid 0.05 ± 0.1a 0.05 ± 0.1a 0.01 ± 0.1a 1.94 ± 0.1b

C14:0 myristic acid 0.86 ± 0.1 0.97 ± 0.1 0.88 ± 0.1 0.89 ± 0.1
C16:0 palmitic acid 15.87 ± 0.7 16.69 ± 0.7 16.31 ± 0.6 17.22 ± 0.6
C16:1n7c palmitoleic acid 1.10 ± 0.2a 1.49 ± 0.2b 1.13 ± 0.1a,b 1.15 ± 0.1a,b

C17:0 margaric acid 0.36 ± 0.03 0.35 ± 0.03 0.44 ± 0.02 0.39 ± 0.02
C18:0 steric acid 15.38 ± 0.7 15.40 ± 0.7 15.97 ± 0.6 15.35 ± 0.6
C18:1n7c cis-vaccenic acid 1.50 ± 0.2 1.43 ± 0.2 1.55 ± 0.1 1.53 ± 0.1
C18:1n9c oleic acid 16.10 ± 1.5b 17.67 ± 1.5b 15.74 ± 1.2b 12.64 ± 1.2a

C18:2n6c linoleic acid methyl ester 43.76 ± 2.0 41.13 ± 2.0 43.49 ± 1.6 44.89 ± 1.6
C18:3n3c alpha linolenic acid 0.23 ± 0.04 0.23 ± 0.04 0.25 ± 0.03 0.18 ± 0.03
C18:3n6c y-linolenic acid 3.64 ± 0.3b 3.15 ± 0.3b 3.24 ± 0.3b 1.81 ± 0.3a

C20:2n6c eicosadienoic acid 0.15 ± 0.02 0.21 ± 0.02 0.14 ± 0.01 0.16 ± 0.01
C20:3n3c eicosatrienoic acid 0.59 þ 0.1 0.75 þ 0.1 0.56 þ 0.1 0.89 þ 0.1
C20:3n6c homo-y linolenic acid 0.19 þ 0.04 0.17 þ 0.04 0.12 þ 0.03 0.24 þ 0.03
C:22 2n6c docosadienoic acid 0.07 þ 0.02a 0.07 þ 0.02a 0.04 þ 0.02a 0.22 þ 0.02b

C22:4n6c docosatetraenoic acid 0.004 þ 0.01a 0.009 þ 0.01a "0.002 þ 0.01a 0.316 þ 01b

C22:5n3c docosapentaenoic acid 0.12 þ 0.02 0.15 þ 0.02 0.09 þ 0.02 0.13 þ 0.02
C24:1n9c nervonic acid 0.07 ± 0.02 0.10 ± 0.02 0.04 ± 0.02 0.09 ± 0.02

Plasma fatty acid concentrations as measured by high-performance liquid chromatography in equine metabolic syndrome control (n ¼ 4) versus docosahexaenoic aciderich
microalgae treated (n ¼ 6) horses. Data are expressed as the percentage of total fatty acid concentrations. Results are presented as least square mean ± standard error of the
mean. Within a row, differences (P < .05) are represented by differing superscripts.
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linolenic acid; P ¼ .04) concentrations. Control horses had an in-
crease over time in C16:1n7c concentrations (palmitoleic acid; P ¼
.01) but were not different from treated horses, regardless of time
point. In addition, therewas an overall difference between Day 0 and
Day 46 for C20:3n3c (eicosatrienoic acid; P ¼ .01) and C24:1n9c
(nervonic acid; P ¼ .03) concentrations, with all horses increasing
over time.

3.2. FSIGTT Test

As shown in Table 3, there were no treatment differences in SI,
acute insulin response to glucose (AIRg), disposition index (DI), or
glucose effectiveness (Sg). Nor were there any differences over time
in SI, DI, or Sg. Although there was an overall increase in AIRg from
Day 0 to Day 46 (P ¼ .01), no treatment effects were observed.

3.3. PBMC Inflammatory Cytokine Production

Flow cytometry analysis of TNF-a and IFN-g intracellular protein
(Table 4) showed no significant differences between DHA-rich
microalgae treated and control horses for the percent of lympho-
cytes positive (% gated) for IFN-g or TNF-a nor for IFN-g intensity of
fluorescence per lymphocyte (mean fluorescence intensity [MFI]).
There was a trend (P ¼ .07) in TNF-a MFI, where DHA-rich micro-
algae treated horses decreased over time, whereas control horses
did not change over time and were not different from treated
horses. There was an overall time point difference for IFN-g MFI
(P ¼ .01), with all horses at decreasing over time and an overall
treatment versus control difference with TNF-a % gated higher in
treated horses compared with controls (P < .001).

Lymphocyte gene expression of IFN-g, TNF-a, IL-6, IL-1b, and IL-
10 was not different between time points, regardless of treatment.
There was an overall treatment versus control difference, with IL-1b
expression higher in controls comparedwith treated horses (P¼ .01).

3.4. Serum Cytokine Analysis

Circulating concentrations of IL-6, TNF-a, and CRP as measured
by ELISA were not different between DHA-rich microalgae treated
or control horses (Table 5). There were no overall differences be-
tween Day 0 and Day 46 or any overall differences between treated
or control horses.

4. Discussion

As expected, treated horses in this study had increases in
circulating DHA postsupplementation, similar to what has been
observed by others [32,51,59]. In addition, similar to previous
studies [30], DHA-rich microalgae treated horses had a reduction in
serum triglycerides after supplementation. Human studies have
likewise indicated a positive effect of omega-3 fatty acid supple-
mentation on lipids and lipid metabolism [60,61], including lipids,
which are implicated in insulin resistance and inflammation, such
as ceramide [62]. Indeed, changing the concentrations of dietary
fatty acids can have dramatic effects on circulating fatty acid con-
centrations. In rats, fatty acids containing arachidonic acid, which is
associated with proinflammatory effects, were increased after
feeding a high-fat diet composed primarily of lard [63]. Considering
that dietary supplementation with omega-3 fatty acids can affect
concentrations of lipids associated with anti-inflammatory actions
in ID [60,64], this supports the possibility of their use in individuals
with metabolic dysfunction. In addition, given that changes in lipid
composition can affect proinflammatory pathways and cytokines,
which promote ID by interfering with the insulin signaling cascade
[35], these studies further indicate a link between circulating fatty
acids, SI, and inflammation.

Supplementation with omega-3 fatty acids in equines has been
proposed as a way to improve glucose and insulin dynamics [65],
similar to the improved SI seen in rats, pigs, and humans [66e68].

Table 3
MinMod analysis of frequently sampled intravenous glucose tolerance test (FSIGTT) data for docosahexaenoic acid (DHA)-rich microalgae treated and control horses with
equine metabolic syndrome (EMS) both before (Day 0) and after (Day 46) supplementation period.

Insulin Sensitivity Measures Control Horses Day 0 Control Horses Day 46 Treated Horses Day 0 Treated Horses Day 46

AIRg 158.9 ± 73.8a 394.4 ± 73.8b 153.5 ± 60.2a 335.8 ± 60.2b

SI 0.442 ± 0.215 0.352 ± 0.215 0.324 ± 0.176 0.449 ± 0.176
DI 73.4 ± 77.8 106.0 ± 77.8 73.5 ± 63.5 185.8 ± 63.5
Sg 0.022 ± 0.009 0.025 ± 0.009 0.034 ± 0.007 0.018 ± 0.007

Abbreviations: AIRg, Acute insulin response to glucose; DI, disposition index; Sg, glucose effectiveness; SI, insulin sensitivity.
Measures of insulin resistance in EMS control (n ¼ 4) versus DHA-rich microalgae treated (n ¼ 6) horses from MinMod analysis of FSIGTT data obtained from insulin and
glucose ethylenediaminetetraacetic acid plasma concentrations. Results are presented as least square mean ± standard error of the mean. Within a row, differences (P < .05)
are represented by differing superscripts.

Table 4
Peripheral blood mononuclear cell (PBMC) inflammatory cytokine production for docosahexaenoic acid (DHA)-rich microalgae treated and control horses with equine
metabolic syndrome (EMS) both before (day 0) and after (day 46) supplementation period.

Inflammatory Cytokine Measures Control Horses Day 0 Control Horses Day 46 Treated Horses Day 0 Treated Horses Day 46

IFN-g, % gated 20.13 ± 2.55 20.22 ± 2.55 24.51 ± 2.08 23.56 ± 2.08
IFN-g (ibid), MFI 126.43 ± 7.98 101.86 ± 7.98 108.45 ± 6.52 94.43 ± 6.52
TNF-a, % gated 39.56 ± 2.76 40.96 ± 2.76 53.10 ± 2.25 58.79 ± 2.25
TNF-a (ibid), MFI (ibid) 57.39 ± 6.12 58.52 ± 6.12 64.11 ± 5.00 54.98 ± 5.00
IFN-g (ibid), RQ 13,296 ± 2,192 9,383 ± 2,192 11,395 ± 1,790 9,642 ± 1,790
TNF-a (ibid), RQ 330.5 ± 136.6 315.4 ± 136.6 619.0 ± 111.6 605.3 ± 111.6
IL-6, RQ 48.41 ± 8.74 40.75 ± 8.74 42.91 ± 7.14 39.28 ± 7.14
IL-1b, RQ 3.31 ± 0.91 3.36 ± 0.91 1.86 ± 0.74 1.12 ± 0.74
IL-10, RQ 142.56 ± 34.56 144.06 ± 34.56 221.66 ± 28.22 173.84 ± 28.22

Abbreviations: INF-g, interferon gamma; IL, interleukin; MFI, mean fluorescence intensity; RQ, Relative quantity; TNF-a, tumor necrosis factor alpha.
PBMC inflammatory data in EMS control (n ¼ 4) versus DHA-rich microalgae treated (n ¼ 6) horses. Flow cytometry data are represented by % gated and MFI, which
characterize the percent of lymphocytes positive for IFN-g or TNF-a protein (% gated) and the intensity of fluorescence or mean cytokine activity, per lymphocyte. Reverse
transcription polymerase chain reaction data are represented by RQ of gene expression. Results are presented as least square mean ± standard error of the mean. No dif-
ferences were observed between groups.
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Algal DHA has also been shown in horses after dexamethasone
administration to improve baseline glucose and insulin concen-
trations, as well as the modified insulin to glucose ratio [69]. In
addition, marine and flax-based supplementation in horses tended
to improve SI in response to an FSIGTT, but only in ID not in
metabolically normal animals [65]. In this study, there was a pos-
itive effect on metabolic parameters in horses fed 16 g/d DHA from
an algal source for 46 days. Specifically, treated horses did not have
the same increase in insulin responses to an OST. These improved
insulin responses to the OST suggest that supplementation pro-
vided a protective effect from increases in insulin responses seen in
the control group. This increase in insulin measured in the control
horses may be in part because of seasonal changes as the study
began in the fall (early November) and ended in the winter (early
January). Season can influence endocrine parameters, including
higher ACTH and insulin values in the fall months in horses with
PPID [70] and seasonal variations in glucose responses to IV glucose
tolerance testing in healthy horses [71]. However, there have been
conflicting reports regarding effects of season on insulin or glucose
in groups of healthy or ID horses [65,72], indicating that more work
is needed to explore possible seasonal effects on insulin and insulin
responses to the OST in the EMS animal.

In humans and mice, metabolic dysfunction has long been
associated with increases in inflammation [73,74]. These increases
in inflammation have been proposed to play a role in metabolic
dysfunction in the EMS horse or pony as well [75e77]. For this
study, treated horses had a trend for a decrease in TNF-a MFI
postsupplementation, indicating a potential immune-modulating
anti-inflammatory effect of DHA-rich microalgae supplementa-
tion in horses with EMS. There were no differences in gene
expression of PBMC inflammatory markers as measured by RT-
PCR, suggesting modification occurs posttranscriptionally.
Although no differences were seen in circulating inflammatory
markers as measured by ELISA either pre- or post-
supplementation, this is likely due in part to small sample sizes
and large variability. In addition, animals may need to be chal-
lenged to see any differences in inflammatory markers, similar to
previously published differences in response to OST in EMS horses
versus controls [9]. Also observed was an overall effect of time on
IFN-g MFI and an overall effect of group on TNF-a % gated and IL-
1b gene expression. However, there was no observed treatment by
time interactions, suggesting that these overall effects were not
because of treatment. Results from other work regarding the effect
of omega-3 fatty acid supplementation on inflammatory param-
eters in the horse has been mixed. Although fish oil supplemen-
tation has not been shown to lower prostaglandin E2 (PGE2)
production in lipopolysaccharide (LPS) stimulated PBMCs from
yearling horses [59], there has been an effect after 14 weeks of fish
oil supplementation on PGE2 production in healthy equine LPS-
stimulated bronchoalveolar lavage fluid (BAL) cells compared
with those supplemented with corn oil [78]. Feeding seal blubber
oil as a source of omega-3 fatty acids has also been shown to have
anti-inflammatory effects in the BAL of horses with recurrent

airway obstruction [79]. The algal source used for this work
largely contained DHA with only minor amounts of EPA, and DHA
has been shown to be more effective in reducing inflammation
compared with EPA [80,81]. This may have been one of the rea-
sons for the observed trend in reduction of TNF-a MFI after sup-
plementation contrary to negative results seen by others.

Although we did observe difference in circulating fatty acids,
inflammation, and insulin responses, the major limitation of this
studywas small sample size. This was partly out of the investigators
control, as this studywas originally intended as a cross-over design.
However, treated horses had significantly elevated circulating DHA
concentrations 263 days after cessation of supplementation. Others
have reported that 42 days [32] and 56 days [82] post-
supplementation, DHA and EPA concentrations were not different
from controls. This discrepancy may be explained by the fact that in
the present study, horses had increased adiposity compared with
presumably metabolically normal horses used in other studies. In
human and horses, DHA and EPA supplementation appears to be
dose responsive [32,83]. In addition, it has been shown in humans
that DHA can be stored in adipose tissue for years [84]. Therefore,
treated horses may have stored DHA in large amounts in adipose
tissue and slowly released it over an extended period. An additional
explanation may be that most other equine studies have used a fish
oil source of DHA and EPA, whereas the present study used an algal
source of DHA. Considering that DHA has been shown to be more
readily incorporated into tissue than EPA [85], DHA versus EPA
concentrations or the ratio of DHA to EPA may influence DHA
incorporation into and release from tissue. Therefore, future studies
with larger cohorts and with or without additional therapeutic
strategies (i.e., dietary restriction) are needed to fully understand
the effects of DHA supplementation in horses with EMS.

5. Conclusions

DHA-rich microalgae supplementation in this pilot study posi-
tively affectedmetabolic and lipid parameters and found a trend for
an improvement in TNF-a MFI after 46 days of 16 g/d algal DHA
supplementation in a group of horses with EMS. Although sup-
plementation did not normalize insulin levels, given long term, it
may prove useful as a nutritional therapy in addition to diet and
exercise for horse with this syndrome. However, more work is
needed to investigate this further and to better understand
mechanisms responsible for the capacity of DHA-rich microalgae to
modulate these parameters.
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Table 5
Serum inflammatory cytokine and C-reactive protein (CRP) results for docosahexaenoic acid (DHA)-rich microalgae treated and control horses with equine metabolic syn-
drome (EMS) both before (Day 0) and after (Day 46) supplementation period.

Serum Inflammatory Cytokines and CRP Control Horses Day 0 Control Horses Day 46 Treated Horses Day 0 Treated Horses Day 46

TNF-a 18.5 ± 596.6 19.1 ± 596.6 57.0 ± 487.1 1,375.1 ± 487.1
Log IL-6 0.32 ± 0.32 0.34 ± 0.32 1.05 ± 0.26 1.25 ± 0.26
CRP 272.4 ± 837.1 566.9 ± 837.1 278.5 ± 683.5 1,636.5 ± 638.5

Abbreviation: TNF-a, tumor necrosis factor alpha.
Circulating inflammatory cytokines and CRP in EMS control (n ¼ 4) versus DHA-rich microalgae treated (n ¼ 6) horses. Data are expressed as enzyme-linked immunosorbent
assay units. Results are presented as least square mean ± standard error of the mean. No differences were observed between groups.
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